博客
关于我
Li‘s 影像组学视频学习笔记(15)-ROC曲线及其绘制
阅读量:563 次
发布时间:2019-03-09

本文共 905 字,大约阅读时间需要 3 分钟。

本笔记来源于B站Up主: 有Li 的影像组学系列教学视频

本节(15)主要介绍:

  • ROC 曲线

ROC = receiver operating characteristic curve, 受试者工作特征曲线

横坐标:FPR = false positive rate, 假阳
纵坐标:TPR = true positive rate, 真阳
ROC曲线上的点,表示在不同阈值时对应的FPR和TPR
上面的阈值指预测阳性概率为多大及以上时,判定为阳性
关注四个点来理解ROC曲线:
(0,0) :FPR = 0,TPR = 0, 即全部预测N
(1,1) :FPR = 1,TPR = 1,即全部预测P
(1,0) :FPR = 1,TPR = 0,即全部预测错了
(1,1) :FPR =1,TPR = 1, 即全部预测对了

  • AUC = area under curve

代码(基于之前的数据结果):

from sklearn.metrics import roc_curve, roc_auc_scorey_probs = model_svm.predict_proba(X)#print(y_probs)#print(y_probs[:,1])fpr,tpr,thresholds = roc_curve(y,y_probs[:,1],pos_label = 1)plt.plot(fpr,tpr,marker = 'o')plt.xlabel('fpr')plt.ylabel('tpr')plt.show()auc_score = roc_auc_score(y,model_svm.predict(X))print(auc_score)
#select the best thresholdJ = tpr - fpridx = argmax(J)best_threshold = thresholds[idx]

作者:北欧森林

链接:https://www.jianshu.com/p/496bb5f371d3
来源:简书,已获授权转载

RadiomicsWorld.com “影像组学世界”论坛:

你可能感兴趣的文章
MySQL数据库设计与开发规范
查看>>
MYSQL数据库进阶操作
查看>>
MySQL数据库配置文件调优详解
查看>>
MySQL数据库酒店客房管理系统(含MySQL源码) 结课作业 做的不是很好
查看>>
mysql数据库里的一些坑(读高性能mysql有感)
查看>>
MySQL数据库面试题(2021最新版)
查看>>
MySQL数据库高并发优化配置
查看>>
mysql数据恢复
查看>>
MySQL数据的主从复制、半同步复制和主主复制详解
查看>>
mysql数据碎片整理
查看>>
MySQL数据类型
查看>>
MySQL数据类型字节长度
查看>>
mysql数据被误删的恢复方案
查看>>
MySQL数据读写分离(MaxScale)上干货!!!
查看>>
mysql整库导入、导出
查看>>
mysql文本函数和数字函数
查看>>
Mysql新建用户和数据库并授权
查看>>
mysql日志
查看>>
mysql日志 事务问题_mysql因为事务日志问题无法启动
查看>>
mysql日志文件
查看>>